In today’s organization, the myriad of analytics and permutations of dashboards challenge workers’ ability to take contextual actions efficiently. Unfortunately, conventional wisdom for investing in analytics does not recognize the benefits of empowering the workforce to understand the situation, examine options and work together to make the best possible decision.
Read More
Topics:
business intelligence,
Analytics,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
For far too long, business intelligence technologies have left the rest of the exercise to the reader. Many of these tools do an excellent job providing information in an interactive way that lets organizations dive into the data and learn a lot about what has happened across all aspects of the business. More recently, many of these tools have added augmented intelligence capabilities that help explain why things happened. But rarely did any of these tools provide information about what to do...
Read More
Topics:
Analytics,
Business Intelligence,
Digital Technology,
Analytics and Data,
AI and Machine Learning
The shift from on-premises server infrastructure to cloud-based and software-as-a-service (SaaS) models has had a profound impact on the data and analytics architecture of many organizations in recent years. More than one-half of participants (59%) in Ventana Research’s Analytics and Data Benchmark research are deploying data and analytics workloads in the cloud, and a further 30% plan to do so. Customer demand for cloud-based consumption models has also had a significant impact on the products...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data Management,
Data,
natural language processing,
data operations,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
Ventana Research uses the term “data pantry” to describe a method of data storage (and the technology and process blueprint for its construction) created for a specific set of users and use cases in business-focused software. It’s a pantry because all the data one needs is readily available and easily accessible, with labels that are immediately recognized and understood by the users of the application. In tech speak, this means the semantic layer is optimized for the intended audience. It is...
Read More
Topics:
Continuous Planning,
Business Intelligence,
Data Management,
Business Planning,
Data,
Financial Performance Management,
Enterprise Resource Planning,
continuous supply chain,
data operations,
Streaming Data & Events,
Analytics and Data,
AI and Machine Learning
In previous perspectives in this series, I’ve discussed some of the realities of cloud computing including costs, hybrid and multi-cloud configurations and business continuity. This perspective examines the realities of security and regulatory concerns associated with cloud computing. These issues are often cited by our research participants as reasons they are not embracing the cloud. To be fair, the majority of our research participants are embracing the cloud. However, among those that have...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Governance,
Digital Technology,
Analytics and Data,
AI and Machine Learning
Recently, I suggested you need to “mind the gap” between data and analytics. This perspective addresses another gap — the gap in skills between business intelligence (BI) and artificial intelligence/machine learning (AI/ML).
Read More
Topics:
Analytics,
Business Intelligence,
Digital Technology,
Analytics and Data,
AI and Machine Learning
Almost all organizations are investing in data science, or planning to, as they seek to encourage experimentation and exploration to identify new business challenges and opportunities as part of the drive toward creating a more data-driven culture. My colleague, David Menninger, has written about how organizations using artificial intelligence and machine learning (AI/ML) report gaining competitive advantage, improving customer experiences, responding faster to opportunities and threats, and...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
If you’ve ever been to London, you are probably familiar with the announcements on the London Underground to “mind the gap” between the trains and the platform. I suggest we also need to mind the gap between data and analytics. These worlds are often disconnected in organizations and, as a result, it limits their effectiveness and agility.
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Data Governance,
Data Management,
data operations,
Analytics and Data
I have written a few times in recent months about vendors offering functionality that addresses data orchestration. This is a concept that has been growing in popularity in the past five years amid the rise of Data Operations (DataOps), which describes more agile approaches to data integration and data management. In a nutshell, data orchestration is the process of combining data from multiple operational data sources and preparing and transforming it for analysis. To those unfamiliar with the...
Read More
Topics:
Data Management,
Data,
data operations,
Analytics and Data,
AI and Machine Learning