I am happy to share insights gleaned from our latest Buyers Guide, an assessment of how well software providers’ offerings meet buyers’ requirements. The Data Platforms Ventana Research Buyers Guide is the distillation of a year of market and product research by ISG and Ventana Research.
Read More
Topics:
analytic data platforms,
Analytics and Data
The increasing importance of intelligent operational applications driven by artificial intelligence (AI) is blurring the lines that have traditionally divided the requirements between operational and analytic data platforms. Operational data platforms have traditionally been deployed to support applications targeted at business users and decision-makers to run the business, with analytic data platforms typically supporting applications used by data and business analysts to analyze the business.
Read More
Topics:
embedded analytics,
Analytics,
Cloud Computing,
analytic data platforms,
Analytics and Data
In recent years, many enterprises have migrated data platform workloads from on-premises infrastructure to cloud environments, attracted by the promised benefits of greater agility and lower costs. The scale of cloud data platform adoption is illustrated by Ventana Research’s Data Lakes Dynamic Insights research: For two-thirds (66%) of participants, the primary data platform used for analytics is cloud based. As the quantity and importance of the data platform workloads deployed in the cloud...
Read More
Topics:
business intelligence,
Cloud Computing,
data operations,
robotic automation,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
Ventana Research recently announced its 2024 Market Agenda for Analytics and Data, continuing the guidance we have offered for two decades to help enterprises derive optimal value and improve business outcomes.
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Data Governance,
Data Management,
natural language processing,
data operations,
Process Mining,
Streaming Analytics,
Streaming Data Events,
analytic data platforms,
Analytics and Data
Discussion about potential deployment locations for analytics and data workloads is often based on the assumption that, for enterprise workloads, there is a binary choice between on-premises data centers and public cloud. However, the low-latency performance or sovereignty characteristics of a significant and growing proportion of workloads make them better suited to data and analytics processing where data is generated rather than a centralized on-premises or public cloud environment. ...
Read More
Topics:
Cloud Computing,
Internet of Things,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
As articulated in Ventana Research’s Data Platforms Buyer’s Guide and DataOps Buyer’s Guide research, the combination of cloud computing and advanced analytics has lowered the cost of storing and processing large volumes of data, accelerating the emergence of new data platform and data operations products that enable organizations to gain operational efficiency and competitive advantage. The right combination of data platform and data management products is essential to ensure that the right...
Read More
Topics:
Data Management,
Data,
Digital Technology,
data operations,
analytic data platforms,
Analytics and Data
I previously described how Oracle had positioned its database portfolio to address any and all data platform requirements. The caveat to that statement at the time was that any organization wanting to take advantage of the company’s flagship Oracle Autonomous Database could only do so using Oracle Cloud Infrastructure (OCI) cloud computing service, their own datacenter or a hybrid cloud environment. The widespread popularity of Oracle Database and the advanced automation capabilities delivered...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Management,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
insightsoftware offers a portfolio of software designed mainly for the office of finance to handle reporting, budgeting and planning, consolidation and close management, business intelligence (BI) and analytics, as well as compliance. The company’s applications directly address a core issue confronting many finance department executives today: Productivity. The U.S. Bureau of Labor statistics reported that 17% of accountants retired or resigned in the 2020-22 period, cutting the available...
Read More
Topics:
Office of Finance,
Business Planning,
ERP and Continuous Accounting,
analytic data platforms
I previously wrote about the challenge facing distributed SQL database providers to avoid becoming pigeonholed as only being suitable for a niche set of requirements. Factors including performance, reliability, security and scalability provide a focal point for new vendors to differentiate from established providers and get a foot in the door with customer accounts. Expanding and retaining those accounts is not necessarily easy, however, especially as general-purpose data platform providers...
Read More
Topics:
Analytics,
Cloud Computing,
Data,
Digital Technology,
Streaming Data Events,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
I previously discussed the trust and accuracy limitations of large language models, suggesting that data and analytics vendors provide guidance about potentially inaccurate results and the risks of creating a misplaced level of trust. In the months that have followed, we are seeing some clarity from these vendors about the approaches organizations can take to increase trust and accuracy when developing applications that incorporate generative AI, including fine-tuning and prompt engineering. It...
Read More
Topics:
Analytics,
Business Intelligence,
Data,
Digital Technology,
natural language processing,
data operations,
analytic data platforms,
Analytics and Data
I previously described how Databricks had positioned its Lakehouse Platform as the basis for data engineering, data science and data warehousing. The lakehouse design pattern provides a flexible environment for storing and processing data from multiple enterprise applications and workloads for multiple use cases. I assert that by 2025, 8 in 10 current data lake adopters will invest in data lakehouse architecture to improve the business value generated from the accumulated data.
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Management,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
The data platforms market may appear to have little or nothing to do with haute couture, but it is one of the data sectors most strongly influenced by the fickle finger of fashion. In recent years, various architectural approaches to data storage and processing have enjoyed a phase in the limelight, including data warehouse, data mart, data hub, data lake, cloud data warehouse, object storage, data lakehouse, data fabric and data mesh. These approaches are often heralded as the next big thing,...
Read More
Topics:
Cloud Computing,
Data Governance,
Data Management,
Data,
Digital Technology,
data operations,
Streaming Data Events,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
I have written before about the rising popularity of the data fabric approach for managing and governing data spread across distributed environments comprised of multiple data centers, systems and applications. I assert that by 2025, more than 6 in 10 organizations will adopt data fabric technologies to facilitate the management and processing of data across multiple data platforms and cloud environments. The data fabric approach is also proving attractive to vendors, including Microsoft, as a...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Governance,
Data Management,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
Organizations today have an ever-increasing appetite for platforms that improve the speed and efficiency of data analytics and business intelligence (BI). The ability to quickly process data enables organizations to make well-informed decisions in real time. This agile approach to data processing is crucial for staying ahead in today's competitive landscape. With the rising need for data-driven insights, organizations face the difficulty of dealing with massive volumes of distributed business...
Read More
Topics:
Data Management,
Data,
data operations,
analytic data platforms
It is a mark of the rapid, current pace of development in artificial intelligence (AI) that machine learning (ML) models, until recently considered state of the art, are now routinely being referred to by developers and vendors as “traditional.” Generative AI, and large language models (LLMs) in particular, have taken the AI world by storm in the past year, automating and accelerating the development of content, including text, digital images, audio and video, as well as computer programs and...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Governance,
Data,
Digital Technology,
natural language processing,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
The publication of Ventana Research’s 2023 Operational Data Platforms Value Index earlier this year highlighted the importance of incorporating analytic processing into operational applications to deliver personalization and recommendations for workers, partners and customers. This importance is being accelerated by interest in generative AI, especially large language models. The emergence of intelligent applications has impacted the requirements for operational data platforms with the need to...
Read More
Topics:
Analytics,
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
Organizations increasingly rely on real-time analytics to make informed decisions and stay competitive in today’s data-driven business landscape. As the complexity of data grows with the continuous addition of diverse sources, customers and workers alike expect real-time responsiveness. Accelerated query performance is crucial to process and extract valuable insights from data in a timely manner. Traditional analytics applications are often insufficient for managing the scale, velocity and...
Read More
Topics:
Data Management,
Data,
data operations,
Streaming Data Events,
analytic data platforms
Data fabric has grown in popularity as organizations struggle to manage data spread across multiple data centers, systems and applications. By providing a technology-driven approach to automating data management and governance across distributed environments, data fabric is attractive to organizations seeking to simplify and standardize data management. I assert that by 2025, more than 6 in 10 organizations will adopt data fabric technologies to facilitate the management and processing of data...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
analytic data platforms,
Analytics and Data
The Office of Finance can be compared to a numbers factory where the main raw material, data, is transformed into financial statements, management accounting, analyses, forecasts, budgets, regulatory filings, tax returns and all kinds of reports. Data is the strategic raw material of the finance and accounting department. It is the key ingredient in every sale and purchase as well as every transaction of any description. Quality control is essential to achieving high standards of output in any...
Read More
Topics:
Office of Finance,
embedded analytics,
Analytics,
Business Intelligence,
Data Management,
Business Planning,
ERP and Continuous Accounting,
data operations,
analytic data platforms,
AI and Machine Learning
The data platforms market has traditionally been divided between products specifically designed to support operational or analytic workloads, with other market segments having emerged in recent years for data platforms targeted specifically at data science and machine learning (ML), as well as real-time analytics. More recently, we have seen vendor strategies evolving to provide a more consolidated approach, with data platforms designed to address a combination of analytics and data science, as...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
The recent publication of our Value Index research highlights the impact of intelligent applications on the operational data platforms sector. While we continue to believe that, for most use cases, there is a clear, functional requirement for either analytic or operational data platforms, recent growth in the development of intelligent applications infused with the results of analytic processes, such as personalization and artificial intelligence (AI)-driven recommendations, has increasing...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
Success with streaming data and events requires a more holistic approach to managing and governing data in motion and data at rest. The use of streaming data and event processing has been part of the data landscape for many decades. For much of that time, data streaming was a niche activity, however, with standalone data streaming and event-processing projects run in parallel with existing batch-processing initiatives, utilizing operational and analytic data platforms. I noted that there has...
Read More
Topics:
Analytics,
Data,
Digital Technology,
Streaming Analytics,
Streaming Data Events,
analytic data platforms,
Analytics and Data
Now more than ever, effective data management is crucial to enable decision-makers to better assess information and take calculated actions. It is also important to keep up with the latest trends and technologies to derive higher value from data and analytics and maintain a competitive edge in the market. However, every organization faces challenges with data management and analytics. And as organizations scale, the complexity only increases, creating a need for better data governance, data...
Read More
Topics:
Analytics,
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms
Organizations require faster analytics to continuously improve business operations and stay competitive in today’s market. However, many struggle with slow analytics due to a variety of factors such as slow databases, insufficient data storage capacity, poor data quality, lack of proper data cleansing and inadequate IT infrastructure. Challenges such as data silos can also decrease operational efficiency. And as the data grows, performing complex data modelling becomes challenging for users as...
Read More
Topics:
Data Management,
Data,
analytic data platforms
I have written about the increased demand for data-intensive operational applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. I previously described the use of hybrid data processing to enable analytics on application data within operational data platforms. As is often the case in the data platforms sector, however, there is more than one way to peel an orange. Recent years have also seen the emergence of...
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
Organizations across various industries collect multiple types of data from disparate systems to answer key business questions and deliver personalized experiences for customers. The expanding volume of data increases complexity, and data management becomes a challenge if the process is manual and rules-based. There can be numerous siloed, incomplete and outdated data sources that result in inaccurate results. Organizations must also deal with concurrent errors – from customers to products to...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms
I am happy to share insights from our latest Ventana Research Value Index research, which assesses how well vendors’ offerings meet buyers’ requirements. The 2023 Analytic Data Platforms Value Index is the distillation of a year of market and product research by Ventana Research. Drawing on our Benchmark Research, we apply a structured methodology built on evaluation categories that reflect real-world criteria incorporated in a request for proposal to data platform vendors supporting the...
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
Ventana Research recently published the 2023 Analytic Data Platforms Value Index. As organizations strive to be more data-driven, increasing reliance on data as a fundamental factor in business decision-making, the importance of the analytic data platform has never been greater. In this post, I’ll share some of my observations about how the analytic data platforms market is evolving.
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
Ventana Research recently announced its 2023 Market Agenda for Data, continuing the guidance we have offered for two decades to help organizations derive optimal value and improve business outcomes.
Read More
Topics:
Cloud Computing,
Data Governance,
Data Management,
Data,
Digital Technology,
data operations,
Streaming Data Events,
analytic data platforms,
Analytics and Data
Ventana Research recently published the 2023 Operational Data Platforms Value Index. The importance of the operational data platform has never been greater as organizations strive to be more data-driven, incorporating intelligence into operational applications via personalization and recommendations for workers, partners and customers. In this post, I’ll share some of my observations on how the operational data platforms market is evolving.
Read More
Topics:
Cloud Computing,
Data,
analytic data platforms,
Analytics and Data
I am happy to share insights from our latest Ventana Research Value Index, which assesses how well vendors’ offerings meet buyers’ requirements. The 2023 Data Platforms Value Index is the distillation of a year of market and product research by Ventana Research. Drawing on our Benchmark Research, we apply a structured methodology built on evaluation categories that reflect real-world criteria incorporated in a request for proposal to data platform vendors that support the spectrum of...
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
Having recently completed the 2023 Data Platforms Value Index, I want to share some of my observations about how the market is evolving. Although this is our inaugural assessment of the market for data platforms, the sector is mature and products from many of the vendors we assess can be used to effectively support operational and analytic use cases.
Read More
Topics:
Cloud Computing,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data
In today’s organization, the myriad of analytics and permutations of dashboards challenge workers’ ability to take contextual actions efficiently. Unfortunately, conventional wisdom for investing in analytics does not recognize the benefits of empowering the workforce to understand the situation, examine options and work together to make the best possible decision.
Read More
Topics:
business intelligence,
Analytics,
Data,
Digital Technology,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
The shift from on-premises server infrastructure to cloud-based and software-as-a-service (SaaS) models has had a profound impact on the data and analytics architecture of many organizations in recent years. More than one-half of participants (59%) in Ventana Research’s Analytics and Data Benchmark research are deploying data and analytics workloads in the cloud, and a further 30% plan to do so. Customer demand for cloud-based consumption models has also had a significant impact on the products...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data Management,
Data,
natural language processing,
data operations,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
One of the most significant considerations when choosing an analytic data platform is performance. As organizations compete to benefit most from being data-driven, the lower the time to insight the better. As data practitioners have learnt over time, however, lowering time to insight is about more than just high-performance queries. There are opportunities to improve time to insight throughout the analytics life cycle, which starts with data ingestion and integration, includes data preparation...
Read More
Topics:
Business Intelligence,
Data,
data operations,
analytic data platforms,
AI and Machine Learning
Organizations are increasingly utilizing cloud object storage as the foundation for analytic initiatives. There are multiple advantages to this approach, not least of which is enabling organizations to keep higher volumes of data relatively inexpensively, increasing the amount of data queried in analytics initiatives. I assert that by 2024, 6 in ten organizations will use cloud-based technology as the primary analytics data platform, making it easier to adopt and scale operations as necessary.
Read More
Topics:
Teradata,
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms,
Vantage platform
Almost all organizations are investing in data science, or planning to, as they seek to encourage experimentation and exploration to identify new business challenges and opportunities as part of the drive toward creating a more data-driven culture. My colleague, David Menninger, has written about how organizations using artificial intelligence and machine learning (AI/ML) report gaining competitive advantage, improving customer experiences, responding faster to opportunities and threats, and...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
I have previously written about growing interest in the data lakehouse as one of the design patterns for delivering hydroanalytics analysis of data in a data lake. Many organizations have invested in data lakes as a relatively inexpensive way of storing large volumes of data from multiple enterprise applications and workloads, especially semi- and unstructured data that is unsuitable for storing and processing in a data warehouse. However, early data lake projects lacked structured data...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
Streaming Data Events,
analytic data platforms,
AI and Machine Learning
In their pursuit to be data-driven, organizations are collecting and managing more data than ever before as they attempt to gain competitive advantage and respond faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. As data is increasingly spread across multiple data centers, clouds and regions, organizations need to manage data on multiple systems in different locations and bring it together for analysis. As the data volumes increase...
Read More
Topics:
Data Management,
Data,
data operations,
analytic data platforms
Ventana Research’s Data Lakes Dynamics Insights research illustrates that while data lakes are fulfilling their promise of enabling organizations to economically store and process large volumes of raw data, data lake environments continue to evolve. Data lakes were initially based primarily on Apache Hadoop deployed on-premises but are now increasingly based on cloud object storage. Adopters are also shifting from data lakes based on homegrown scripts and code to open standards and open...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
data operations,
Streaming Data Events,
analytic data platforms,
Analytics and Data,
AI and Machine Learning
I have written before about the continued use of specialist operational and analytic data platforms. Most database products can be used for operational or analytic workloads, and the number of use cases for hybrid data processing is growing. However, a general-purpose database is unlikely to meet the most demanding operational or analytic data platform requirements. Factors including performance, reliability, security and scalability necessitate the use of specialist data platforms. I assert...
Read More
Topics:
business intelligence,
Cloud Computing,
Data Management,
Data,
analytic data platforms,
Analytics and Data
Earlier this year I described the growing use-cases for hybrid data processing. Although it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads respectively, there is increased demand for intelligent operational applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. There are multiple data platform approaches to...
Read More
Topics:
Business Intelligence,
Cloud Computing,
Data,
Streaming Data Events,
analytic data platforms,
AI and Machine Learning
People analytics enable organizations to gain data-driven insights that optimize the impact and value of the workforce. For decades, human capital management (HCM) leaders have been sold tools marketed as analytics that were no more than dashboards filled with nice visualizations of historic data with no context as to what each individual data point meant to their strategic objectives and initiatives. And yet, our recent Analytics and Data Benchmark Research shows that 83% of organizations...
Read More
Topics:
Human Capital Management,
Workforce Management,
analytic data platforms
I have written recently about increased demand for data-intensive applications infused with the results of analytic processes, such as personalization and artificial intelligence (AI)-driven recommendations. Almost one-quarter of respondents (22%) to Ventana Research’s Analytics and Data Benchmark Research are currently analyzing data in real time, with an additional 10% analyzing data every hour. There are multiple data platform approaches to delivering real-time data processing and analytics...
Read More
Topics:
Cloud Computing,
Data,
Streaming Analytics,
Streaming Data Events,
analytic data platforms,
Analytics and Data
I recently explained how emerging application requirements were expanding the range of use cases for NoSQL databases, increasing adoption based on the availability of enhanced functionality. These intelligent applications require a close relationship between operational data platforms and the output of data science and machine learning projects. This ensures that machine learning and predictive analytics initiatives are not only developed and trained based on the relationships inherent in...
Read More
Topics:
Business Intelligence,
Data,
analytic data platforms,
AI and Machine Learning