About the Analyst
Matt Aslett
Matt leads the expertise in Digital Technology covering applications and technology that improve the readiness and resilience of business and IT operations. His focus areas of expertise and market coverage include: analytics and data, artificial intelligence and machine learning, blockchain, cloud computing, collaborative and conversational computing, extended reality, Internet of Things mobile computing and robotic automation. Matt’s specialization is in operational and analytical use of data and how businesses can modernize their approaches to business to accelerate the value realization of technology investments in support of hybrid and multi-cloud architecture. Matt has been an industry analyst for more than a decade and has pioneered the coverage of emerging data platforms including NoSQL and NewSQL databases, data lakes and cloud-based data processing. He is a graduate of Bournemouth University.
Natural language interfaces for business intelligence products existed long before the emergence of generative artificial intelligence. Large language models have allowed BI providers to accelerate the delivery of functionality to convert natural language questions into analytic queries and generate summarizations and recommendations from data and charts. Features that enable natural language query and natural language generation are now ubiquitous.
Read More
Topics:
Analytics,
AI,
Generative AI
In an earlier Analyst Perspective, I discussed data democratization’s role in creating a data-driven enterprise agenda. Building a foundation of self-service data discovery, data-driven organizations provide more workers with the ability to analyze and use data. I’ve also examined how generative artificial intelligence (GenAI) could revolutionize business intelligence software by using natural language interfaces to lower the barriers to working with analytics software. Today, however, data...
Read More
Topics:
Analytics,
AI,
Data Intelligence
As enterprises embrace the potential opportunities presented by artificial intelligence (AI), they are quickly finding that good data management is a prerequisite. As was explained in ISG’s State of Generative AI Market Report, AI requires data that is clean, well-organized and compliant with regulatory standards. There are multiple challenges to delivering AI-ready data, including combining structured and unstructured data, ensuring that the combined data can be trusted, and validating that...
Read More
Topics:
Machine Learning,
Analytics,
IT,
AI,
Data Platforms,
ADM,
DevOps
Increased enterprise focus on artificial intelligence (AI) and generative AI (GenAI) has served to sharpen the focus on the need for trusted data and reliable analytics and data operations. The ISG State of Generative AI Market Report highlighted that elevated expectations and demands associated with AI are a forcing function for enterprises to take long-overdue steps to improve data and analytics processes to ensure that data that is clean, well-organized and compliant with regulatory...
Read More
Topics:
Analytics,
AI,
data operations,
Analytics and Data
Data catalogs provide an inventory of data assets that surface metadata from data platforms, analytics tools and applications that can be used to facilitate data discovery and data usage across an enterprise. As I recently explained, however, there are actually multiple types of data catalogs that offer functionality to address specific use cases and user roles, including data inventory, data discovery and data governance. The data intelligence catalog is an emerging category that combines...
Read More
Topics:
Governance,
Operations
As enterprises seek to expand and accelerate the adoption of artificial intelligence (AI) many are finding that longstanding analytics and data challenges are a barrier to success. As was explained in ISG’s State of Generative AI Market Report, AI requires data that is clean, well-organized and compliant with regulatory standards. The need for good data management is by no means new, but the expectations and demands associated with AI are a forcing function for enterprises to take long-overdue...
Read More
Topics:
Machine Learning,
Analytics,
Data,
Artificial intelligence,
natural language processing
Late 2024 saw the publication of the 2024 ISG Buyers Guides for DataOps, providing an assessment of 49 software providers offering products used by data engineers, data scientists, and data and AI professionals to facilitate the use of data for analytics and AI needs. The DataOps Buyers Guide research includes five reports which are focused on overall DataOps, Data Observability, Data Orchestration, Data Pipelines and Data Products. This is the first time in the industry when all software...
Read More
Topics:
Analytics,
data operations,
Analytics and Data
It is now more than two years since the launch of ChatGPT introduced the world to generative AI (GenAI) and large language models (LLMs). GenAI-based assistants and co-pilots are now widely adopted, with individuals and enterprises adopting GenAI models to automate the generation of text, digital images, audio, video and code, amongst other things.
Read More
Topics:
Analytics,
AI,
Analytics and Data
I recently wrote about the need for enterprises to harness events to process and act upon data at the speed of business. The core technologiesthat enable enterprises to process and analyze data in real time have been in existence for many years and are widely adopted. However, streaming and events technologies are also commonly seen as a niche requirement, separate from an enterprise’s primary focus on batch processing of data at rest. One of the reasons for this is an entrenched reliance on...
Read More
Topics:
Streaming Data & Events,
Analytics and Data
Metadata management has played a role in data governance and analytics for many years. It wasn’t until the emergence of the data catalog as a product category just over a decade ago that enterprises had a platform for metadata-driven data management that could span multiple departments and use cases across an entire enterprise.
Read More
Topics:
Analytics and Data