Natural language interfaces for business intelligence products existed long before the emergence of generative artificial intelligence. Large language models have allowed BI providers to accelerate the delivery of functionality to convert natural language questions into analytic queries and generate summarizations and recommendations from data and charts. Features that enable natural language query and natural language generation are now ubiquitous.
Read More
Topics:
Analytics,
AI,
Generative AI
Infor provides industry-specific enterprise software that enhances business performance and operational efficiency. These verticals and related micro-verticals include manufacturing, food and beverage, hospitality, healthcare, distribution and retail. Infor offers applications for enterprise resource planning, supply chain management, customer relationship management and human capital management, among others. Infor’s strategy is to tailor software with a high percentage of specific...
Read More
Topics:
ERP,
Machine Learning,
Office of Finance,
Operations,
Continuous Accounting,
Supply Chain,
AI
In an earlier Analyst Perspective, I discussed data democratization’s role in creating a data-driven enterprise agenda. Building a foundation of self-service data discovery, data-driven organizations provide more workers with the ability to analyze and use data. I’ve also examined how generative artificial intelligence (GenAI) could revolutionize business intelligence software by using natural language interfaces to lower the barriers to working with analytics software. Today, however, data...
Read More
Topics:
Analytics,
AI,
Data Intelligence
As enterprises embrace the potential opportunities presented by artificial intelligence (AI), they are quickly finding that good data management is a prerequisite. As was explained in ISG’s State of Generative AI Market Report, AI requires data that is clean, well-organized and compliant with regulatory standards. There are multiple challenges to delivering AI-ready data, including combining structured and unstructured data, ensuring that the combined data can be trusted, and validating that...
Read More
Topics:
Machine Learning,
Analytics,
IT,
AI,
Data Platforms,
ADM,
DevOps
SAP was formed in 1972 to create standardized business software that would integrate all business processes and enable data processing in real time. Following the success of the initial release and subsequent R/2, the company went public in 1988 and has grown into one of the world’s largest software companies, reporting more than $37 billion in revenues in its most recent annual report. Through internal development efforts and numerous acquisitions, including Business Objects, Sybase, Ariba,...
Read More
Topics:
Machine Learning,
Analytics,
AI,
Data Intelligence
Increased enterprise focus on artificial intelligence (AI) and generative AI (GenAI) has served to sharpen the focus on the need for trusted data and reliable analytics and data operations. The ISG State of Generative AI Market Report highlighted that elevated expectations and demands associated with AI are a forcing function for enterprises to take long-overdue steps to improve data and analytics processes to ensure that data that is clean, well-organized and compliant with regulatory...
Read More
Topics:
Analytics,
AI,
data operations,
Analytics and Data
One of the promised benefits of artificial intelligence (AI), Generative AI (GenAI) and agents is that they can make everyone their own financial and business analyst. It’s true that these technologies can make it possible for everyone to access once hard-to-reach data (with suitable permissions), unleash agents to assemble the data into useful tables and charts along with commentary describing results and highlighting underlying drivers of results, propose next best actions and use natural...
Read More
Topics:
Office of Finance,
Business Planning,
ERP and Continuous Accounting,
AI,
AI and Machine Learning
It is now more than two years since the launch of ChatGPT introduced the world to generative AI (GenAI) and large language models (LLMs). GenAI-based assistants and co-pilots are now widely adopted, with individuals and enterprises adopting GenAI models to automate the generation of text, digital images, audio, video and code, amongst other things.
Read More
Topics:
Analytics,
AI,
Analytics and Data
Databricks recently announced its Series J funding round, successfully raising $10 billion at a valuation of $62 billion. Led by Thrive Capital alongside high-profile investors such as Andreessen Horowitz and Insight Partners, the company intends to invest this capital towards new artificial intelligence (AI) products, acquisitions and significant expansion of its international operations. In the announcement, Databricks reported that it expects to achieve an annual revenue run rate of $3...
Read More
Topics:
Analytics,
AI,
Analytics and Data
Despite all the interest in artificial intelligence (AI) and generative AI (GenAI), ISG’s Buyers Guide for Data Platforms serves as a reminder of the ongoing importance of product experience functionality to address adaptability, manageability, reliability and usability. While new and emerging capabilities might catch the eye, features that address data platform security, performance and availability remain some of the most significant deal-breakers when enterprises are considering potential...
Read More
Topics:
AI,
Analytics and Data