Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar aaaaa BottomBar

Currently Showing:

  • for Topic: Analytics And Data
  • Available Posts: 0

Increased enterprise focus on artificial intelligence (AI) and generative AI (GenAI) has served to sharpen the focus on the need for trusted data and reliable analytics and data operations. The ISG State of Generative AI Market Report highlighted that elevated expectations and demands associated with AI are a forcing function for enterprises to take long-overdue steps to improve data and...

Read More

Topics: Analytics, AI, data operations, Analytics and Data


Late 2024 saw the publication of the 2024 ISG Buyers Guides for DataOps, providing an assessment of 49 software providers offering products used by data engineers, data scientists, and data and AI professionals to facilitate the use of data for analytics and AI needs. The DataOps Buyers Guide research includes five reports which are focused on overall DataOps, Data Observability, Data...

Read More

Topics: Analytics, data operations, Analytics and Data


It is now more than two years since the launch of ChatGPT introduced the world to generative AI (GenAI) and large language models (LLMs). GenAI-based assistants and co-pilots are now widely adopted, with individuals and enterprises adopting GenAI models to automate the generation of text, digital images, audio, video and code, amongst other things.

Read More

Topics: Analytics, AI, Analytics and Data


I recently wrote about the need for enterprises to harness events to process and act upon data at the speed of business. The core technologiesthat enable enterprises to process and analyze data in real time have been in existence for many years and are widely adopted. However, streaming and events technologies are also commonly seen as a niche requirement, separate from an enterprise’s primary...

Read More

Topics: Streaming Data Events, Analytics and Data


Databricks recently announced its Series J funding round, successfully raising $10 billion at a valuation of $62 billion. Led by Thrive Capital alongside high-profile investors such as Andreessen Horowitz and Insight Partners, the company intends to invest this capital towards new artificial intelligence (AI) products, acquisitions and significant expansion of its international operations. In the...

Read More

Topics: Analytics, AI, Analytics and Data


Metadata management has played a role in data governance and analytics for many years. It wasn’t until the emergence of the data catalog as a product category just over a decade ago that enterprises had a platform for metadata-driven data management that could span multiple departments and use cases across an entire enterprise.

Read More

Topics: Analytics and Data


The degree to which data platforms are critical to efficient business operations cannot be overstated. Without data platforms, enterprises would be reliant on a combination of paper records, time-consuming manual processes and huge libraries of physical files to record, process and store business information. The extent to which that is unthinkable highlights the level at which today’s...

Read More

Topics: Analytics, Analytics and Data


Despite all the interest in artificial intelligence (AI) and generative AI (GenAI), ISG’s Buyers Guide for Data Platforms serves as a reminder of the ongoing importance of product experience functionality to address adaptability, manageability, reliability and usability. While new and emerging capabilities might catch the eye, features that address data platform security, performance and...

Read More

Topics: AI, Analytics and Data


Too often, enterprises find that data is distributed across multiple silos on-premises and in the cloud. More than two-thirds of participants in ISG’s Market Lens Cloud Study are using a hybrid architecture involving both on-premises and cloud infrastructure for analytics and artificial intelligence deployments. Unifying data to achieve operational and analytic objectives requires complex data...

Read More

Topics: AI, Analytics and Data


I previously explained that data observability software has become a critical component of data-driven decision-making. Data observability addresses one of the most significant impediments to generating value from data by providing an environment for monitoring the quality and reliability of data on a continual basis. Maintaining quality and trust is a perennial data management challenge, the...

Read More

Topics: AI, data operations, Analytics and Data


The adoption of cloud environments for analytic workloads has been a key feature of the data platforms sector in recent years. For two-thirds (66%) of participants in ISG’s Data Lake Dynamic Insights Research, the primary data platform used for analytics is cloud based. Many enterprises adopted cloud-based analytic data platforms with a view to improving operational efficiencies by reducing the...

Read More

Topics: data operations, Analytics and Data


I previously wrote about the importance of open table formats to the evolution of data lakes into data lakehouses. The concept of the data lake was initially proposed as a single environment where data could be combined from multiple sources to be stored and processed to enable analysis by multiple users for multiple purposes.

Read More

Topics: Streaming Data Events, Analytics and Data


Although the terms data fabric and data mesh are often used interchangeably, I previously explained that they are distinct but complementary. Data fabric refers to technology products that can be used to integrate, manage and govern data across distributed environments, supporting the cultural and organizational data ownership and access goals of data mesh. Data fabric and data mesh are also both...

Read More

Topics: Analytics and Data


As I noted in the 2024 Buyers Guide for Operational Data Platforms, intelligent applications powered by artificial intelligence have impacted the requirements for operational data platforms. These applications, infused with contextually relevant recommendations, predictions and forecasting, are driven by machine learning and generative AI.

Read More

Topics: Analytics and Data


In today's rapidly evolving technological landscape, artificial intelligence (AI) governance has emerged as a critical ingredient for successful AI deployments. It helps build trust in the results of AI models, it helps ensure compliance with regulations and it is necessary to meet internal governance requirements. Effective AI governance must encompass various dimensions, including data privacy,...

Read More

Topics: AI, Analytics and Data, AI and Machine Learning


As I recently noted, the term “data intelligence” has been used by multiple providers across analytics and data for several years and is becoming more widespread as software providers respond to the need to provide enterprises with a holistic view of data production and consumption. I assert that through 2027, three-quarters of enterprises will be engaged in data intelligence initiatives to...

Read More

Topics: Analytics and Data


I previously wrote about data mesh as a cultural and organizational approach to distributed data processing. Data mesh has four key principles—domain-oriented ownership, data as a product, self-serve data infrastructure and federated governance—each of which is being widely adopted. I assert that by 2027, more than 6 in 10 enterprises will adopt technologies to facilitate the delivery of data as...

Read More

Topics: data operations, Analytics and Data


As I’ve written recently, artificial intelligence governance is a concern for many enterprises. In our recent ISG Market Lens study on generative AI, 39% of participants cited data privacy and security among the biggest inhibitors to adopting AI. Nearly a third (32%) identified performance and quality (e.g., erroneous results), and an equal amount (32%) mentioned legal risk.

Read More

Topics: AI, Analytics and Data, AI and Machine Learning


The final of the men’s 100 meters at the Paris Olympics this summer was a reminder that being successful requires not just being fast but performing at the right time. Being fast is obviously a prerequisite for participating in an Olympic 100-meter final, and all the competitors finished the race in under 10 seconds, with just 0.12 seconds separating the first man from the last. While all the...

Read More

Topics: Streaming Data Events, Analytics and Data


Enterprises face a bewildering level of choice in relation to data platforms, as evidenced by the number of software providers and products assessed in our recent Data Platforms Buyers Guide. There are numerous data platform providers and products to choose from, but also a diverse array of functional and architectural options. Is the workload primarily operational or analytic? Will it be...

Read More

Topics: Analytics and Data, AI and Machine Learning


Posts by Topic

see all

Posts by Month

see all