When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a somewhat vague concept without clear definition. We know data-driven organizations when we see them...
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
natural language processing,
data lakes,
data operations,
Streaming Analytics,
Streaming Data & Events,
Analytics and Data,
AI and Machine Learning
We’ve recently published our latest Benchmark Research on Data Governance and it’s fair to say, “you’ve come a long way, baby.” Many of you reading this weren’t around when that phrase was introduced in 1968 to promote Virginia Slims cigarettes, but you may have heard the phrase because it went on to become a part of popular culture. We’ve learned a lot about cigarettes since then, and we’ve learned a lot about data governance, too.
Read More
Topics:
Big Data,
Data Governance,
Data Management,
Analytics and Data
I recently wrote about the growing range of use cases for which NoSQL databases can be considered, given increased breadth and depth of functionality available from providers of the various non-relational data platforms. As I noted, one category of NoSQL databases — graph databases — are inherently suitable for use cases that rely on relationships, such as social media, fraud detection and recommendation engines, since the graph data model represents the entities and values and also the...
Read More
Topics:
business intelligence,
Analytics,
Cloud Computing,
Data,
Digital Technology,
Analytics and Data,
AI and Machine Learning
I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing business intelligence (BI) and data science tools to analyze data in data lakes. Interactive SQL query...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
data lakes,
data operations,
Analytics and Data,
AI and Machine Learning
I’ve never been a fan of talking about semantic models because most of the workforce probably doesn’t understand what they are, or doesn’t recognize them by name. But the findings in our recent Analytics and Data Benchmark Research have changed my mind. The research shows how important a semantic model can be to the success of data and analytics processes. Organizations that have successfully implemented a semantic model are more than twice as likely to report satisfaction with analytics (77%)...
Read More
Topics:
Business Intelligence,
Data Management,
data operations,
Analytics and Data,
AI and Machine Learning
As I recently described, it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads, albeit with growing demand for hybrid data processing use-cases and functionality. Specialist operational and analytic data platforms have historically been the since preferred option, but there have always been general-purpose databases that could be used for both analytic and operational workloads, with tuning...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
Analytics and Data
I recently described the use cases driving interest in hybrid data processing capabilities that enable analysis of data in an operational data platform without impacting operational application performance or requiring data to be extracted to an external analytic data platform. Hybrid data processing functionality is becoming increasingly attractive to aid the development of intelligent applications infused with personalization and artificial intelligence-driven recommendations. These...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data,
Digital Technology,
Analytics and Data,
AI and Machine Learning
There is a fundamental flaw in information technology, or at least in the way it is most commonly delivered. Most technology systems are developed under the assumption that all people will use the system primarily in the same way. Sure, there are some options built in — perhaps the same action can be initiated by either clicking on a button, selecting a menu item or invoking a keyboard short-cut. The problem is that when every variation needs to be coded into the system, the prospect of...
Read More
Topics:
Business Intelligence,
Data Management,
natural language processing,
data operations,
Analytics and Data,
AI and Machine Learning
The server is a key component of enterprise computing, providing the functional compute resources required to support software applications. Historically, the server was so fundamentally important that it – along with the processor, or processor core – was also a definitional unit by which software was measured, priced and sold. That changed with the advent of cloud-based service delivery and consumption models.
Read More
Topics:
Business Continuity,
Cloud Computing,
Data,
Digital Technology,
Analytics and Data
Over a decade ago, I coined the term NewSQL to describe the new breed of horizontally scalable, relational database products. The term was adopted by a variety of vendors that sought to combine the transactional consistency of the relational database model with elastic, cloud-native scalability. Many of the early NewSQL vendors struggled to gain traction, however, and were either acquired or ceased operations before they could make an impact in the crowded operational data platforms market....
Read More
Topics:
Business Continuity,
Cloud Computing,
Data,
Digital Technology,
Analytics and Data