Organizations have been using data virtualization to collect and integrate data from various sources, and in different formats, to create a single source of truth without redundancy or overlap, thus improving and accelerating decision-making giving them a competitive advantage in the market. Our research shows that data virtualization is popular in the big data world. One-quarter (27%) of participants in our Data Lake Dynamic Insights Research reported they were currently using data...
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Streaming Analytics,
AI and Machine Learning
I recently wrote about the importance of data pipelines and the role they play in transporting data between the stages of data processing and analytics. Healthy data pipelines are necessary to ensure data is integrated and processed in the sequence required to generate business intelligence. The concept of the data pipeline is nothing new of course, but it is becoming increasingly important as organizations adapt data management processes to be more data driven.
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
Digital transformation,
data lakes,
data operations,
Digital Business,
data platforms,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
Data governance is an issue that impacts all organizations large and small, new and old, in every industry, and every region of the world. Data governance ensures that an organization’s data can be cataloged, trusted and protected, improving business processes to accelerate analytics initiatives and support compliance with regulatory requirements. Not all data governance initiatives will be driven by regulatory compliance; however, the risk of falling foul of privacy (and human rights) laws...
Read More
Topics:
Analytics,
Data Governance,
Data
I recently described the growing level of interest in data mesh which provides an organizational and cultural approach to data ownership, access and governance that facilitates distributed data processing. As I stated in my Analyst Perspective, data mesh is not a product that can be acquired or even a technical architecture that can be built. Adopting the data mesh approach is dependent on people and process change to overcome traditional reliance on centralized ownership of data and...
Read More
Topics:
Business Continuity,
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
data lakes,
Digital Business,
data platforms,
Analytics & Data
I have written previously that the world of data and analytics will become more and more centered around real-time, streaming data. Data is created constantly and increasingly is being collected simultaneously. Technology advances now enable organizations to process and analyze information as it is being collected to respond in real time to opportunities and threats. Not all use cases require real-time analysis and response, but many do, including multiple use cases that can improve customer...
Read More
Topics:
business intelligence,
Analytics,
Internet of Things,
Data,
Digital Technology,
Streaming Analytics,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
Data mesh is the latest trend to grip the data and analytics sector. The term has been rapidly adopted by numerous vendors — as well as a growing number of organizations —as a means of embracing distributed data processing. Understanding and adopting data mesh remains a challenge, however. Data mesh is not a product that can be acquired, or even a technical architecture that can be built. It is an organizational and cultural approach to data ownership, access and governance. Adopting data mesh...
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data Integration,
Data,
Digital Technology,
Digital transformation,
data lakes,
data operations,
Digital Business,
data platforms,
Analytics & Data,
Streaming Data & Events
For years, maybe decades, we have heard about the struggles between IT and line-of-business functions. In this perspective, we will look at some of the data from our Analytics and Data Benchmark Research about the roles of IT and line-of-business teams in analytics and data processes. We will also look at some of the disconnects between these two groups. And, by looking at how organizations are operating today and the results they are achieving, we can discern some of the best practices for...
Read More
Topics:
Analytics,
Business Intelligence,
Data,
Digital Technology,
Analytics & Data,
AI and Machine Learning
Despite widespread and increasing use of the cloud for data and analytics workloads, it has become clear in recent years that, for most organizations, a proportion of data-processing workloads will remain on-premises in centralized data centers or distributed-edge processing infrastructure. As we recently noted, as compute and storage are distributed across a hybrid and multi-cloud architecture, so, too, is the data it stores and relies upon. This presents challenges for organizations to...
Read More
Topics:
Analytics,
Business Intelligence,
Data Governance,
Data,
data operations,
data platforms,
AI and Machine Learning
Organizations face various challenges with analytics and business intelligence processes, including data curation and modeling across disparate sources and data warehouses, maintaining data quality and ensuring security and governance. Traditional processes are slow when transforming large and diverse datasets into something which is easily consumable in BI. And, it can take days or weeks to create reports and dashboards — maybe longer if processes change and new data sources are introduced....
Read More
Topics:
Big Data,
Analytics,
Business Intelligence,
Cloud
The various NoSQL databases have become a staple of the data platforms landscape since the term entered the IT industry lexicon in 2009 to describe a new generation of non-relational databases. While NoSQL began as a ragtag collection of loosely affiliated, open-source database projects, several commercial NoSQL database providers are now established as credible alternatives to the various relational database providers, while all the major cloud providers and relational database giants now also...
Read More
Topics:
Analytics,
Data,
data platforms,
AI and Machine Learning