Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar Analyst Perspectives BottomBar
  • Available Posts: 0

I have written recently about the similarities and differences between data mesh and data fabric. The two are potentially complementary. Data mesh is an organizational and cultural approach to data ownership, access and governance. Data fabric is a technical approach to automating data management and data governance in a distributed architecture. There are various definitions of data fabric, but...

Read More

Topics: Business Intelligence, Cloud Computing, Data Governance, Data Management, Data, data operations, AI and Machine Learning


In their pursuit to be data-driven, organizations are collecting and managing more data than ever before as they attempt to gain competitive advantage and respond faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. As data is increasingly spread across multiple data centers, clouds and regions, organizations need to manage data on...

Read More

Topics: Data Management, Data, data operations, analytic data platforms


I have written a few times in recent months about vendors offering functionality that addresses data orchestration. This is a concept that has been growing in popularity in the past five years amid the rise of Data Operations (DataOps), which describes more agile approaches to data integration and data management. In a nutshell, data orchestration is the process of combining data from multiple...

Read More

Topics: Data Management, Data, data operations, Analytics and Data, AI and Machine Learning


Ventana Research’s Data Lakes Dynamics Insights research illustrates that while data lakes are fulfilling their promise of enabling organizations to economically store and process large volumes of raw data, data lake environments continue to evolve. Data lakes were initially based primarily on Apache Hadoop deployed on-premises but are now increasingly based on cloud object storage. Adopters are...

Read More

Topics: Business Intelligence, Data Governance, Data Management, Data, data operations, Streaming Data Events, analytic data platforms, Analytics and Data, AI and Machine Learning


I have recently written about the organizational and cultural aspects of being data-driven, and the potential advantages data-driven organizations stand to gain by responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. I have also explained that data-driven processes require more agile, continuous data processing, with an...

Read More

Topics: Cloud Computing, Data Management, Data, data operations, Analytics and Data


Organizations are collecting data from multiple data sources and a variety of systems to enrich their analytics and business intelligence (BI). But collecting data is only half of the equation. As the data grows, it becomes challenging to find the right data at the right time. Many organizations can’t take full advantage of their data lakes because they don’t know what data actually exists. Also,...

Read More

Topics: Business Intelligence, Data Governance, Data Management, data operations, AI and Machine Learning


The data catalog has become an integral component of organizational data strategies over the past decade, serving as a conduit for good data governance and facilitating self-service analytics initiatives. The data catalog has become so important, in fact, that it is easy to forget that just 10 years ago it did not exist in terms of a standalone product category. Metadata-based data management...

Read More

Topics: business intelligence, Data Governance, Data Management, Data, data operations, Analytics and Data


I have recently written about the importance of healthy data pipelines to ensure data is integrated and processed in the sequence required to generate business intelligence, and the need for data pipelines to be agile in the context of real-time data processing requirements. Data engineers, who are responsible for monitoring, managing and maintaining data pipelines, are under increasing pressure...

Read More

Topics: Big Data, Cloud Computing, Data Management, Data, data operations


When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a...

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, natural language processing, data lakes, data operations, Streaming Analytics, Streaming Data Events, Analytics and Data, AI and Machine Learning


Organizations are continuously increasing the use of analytics and business intelligence to turn data into meaningful and actionable insights. Our Analytics and Data Benchmark Research shows some of the benefits of using analytics: Improved efficiency in business processes, improved communication and gaining a competitive edge in the market top the list. With a unified BI system, organizations...

Read More

Topics: business intelligence, embedded analytics, Data Governance, Data Management, natural language processing, data operations, Streaming Analytics, AI and Machine Learning


I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data lakes, data operations, Analytics and Data, AI and Machine Learning


I’ve never been a fan of talking about semantic models because most of the workforce probably doesn’t understand what they are, or doesn’t recognize them by name. But the findings in our recent Analytics and Data Benchmark Research have changed my mind. The research shows how important a semantic model can be to the success of data and analytics processes. Organizations that have successfully...

Read More

Topics: Business Intelligence, Data Management, data operations, Analytics and Data, AI and Machine Learning


I recently wrote about the potential benefits of data mesh. As I noted, data mesh is not a product that can be acquired, or even a technical architecture that can be built. It’s an organizational and cultural approach to data ownership, access and governance. While the concept of data mesh is agnostic to the technology used to implement it, technology is clearly an enabler for data mesh. For many...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, data operations, Streaming Data Events, AI and Machine Learning


There is a fundamental flaw in information technology, or at least in the way it is most commonly delivered. Most technology systems are developed under the assumption that all people will use the system primarily in the same way. Sure, there are some options built in — perhaps the same action can be initiated by either clicking on a button, selecting a menu item or invoking a keyboard short-cut....

Read More

Topics: Business Intelligence, Data Management, natural language processing, data operations, Analytics and Data, AI and Machine Learning


The data governance landscape is growing rapidly. Organizations handling vast amounts of data face multiple challenges as more regulations are added to govern sensitive information. Adoption of multi-cloud strategies increases governance concerns with new data sources that are accessed in real time. Our Data Governance Benchmark Research shows that organizations face multiple challenges when...

Read More

Topics: Data Governance, Data Management, data operations


I recently wrote about the importance of data pipelines and the role they play in transporting data between the stages of data processing and analytics. Healthy data pipelines are necessary to ensure data is integrated and processed in the sequence required to generate business intelligence. The concept of the data pipeline is nothing new of course, but it is becoming increasingly important as...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, Digital transformation, data lakes, data operations, Streaming Data Events, Analytics and Data, AI and Machine Learning


Data mesh is the latest trend to grip the data and analytics sector. The term has been rapidly adopted by numerous vendors — as well as a growing number of organizations —as a means of embracing distributed data processing. Understanding and adopting data mesh remains a challenge, however. Data mesh is not a product that can be acquired, or even a technical architecture that can be built. It is...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, Digital transformation, data lakes, data operations, Streaming Data Events, Analytics and Data


Despite widespread and increasing use of the cloud for data and analytics workloads, it has become clear in recent years that, for most organizations, a proportion of data-processing workloads will remain on-premises in centralized data centers or distributed-edge processing infrastructure. As we recently noted, as compute and storage are distributed across a hybrid and multi-cloud architecture,...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data, data operations, AI and Machine Learning


As businesses become more data-driven, they are increasingly dependent on the quality of their data and the reliability of their data pipelines. Making decisions based on data does not guarantee success, especially if the business cannot ensure that the data is accurate and trustworthy. While there is potential value in capturing all data — good or bad — making decisions based on low-quality data...

Read More

Topics: Data Governance, Data Integration, Data, Digital Technology, data lakes, data operations, Analytics and Data


I recently described the emergence of hydroanalytic data platforms, outlining how the processes involved in generating energy from a lake or reservoir were analogous to those required to generate intelligence from a data lake. I explained how structured data processing and analytics acceleration capabilities are the equivalent of turbines, generators and transformers in a hydroelectric power...

Read More

Topics: Analytics, Data Governance, Data, Digital Technology, data lakes, data operations, Streaming Data Events, AI and Machine Learning


Posts by Topic

see all

Posts by Month

see all