Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar Analyst Perspectives BottomBar
  • Available Posts: 0

The emergence of generative artificial intelligence (GenAI) has significant implications at all levels of the technology stack, not least analytics and data products, which serve to support the development, training and deployment of GenAI models, and also stand to benefit from the advances in automation enabled by GenAI. The intersection of analytics and data and GenAI was a significant focus of...

Read More

Topics: Analytics, AI, natural language processing, AI and Machine Learning


I recently wrote about the development, testing and deployment of data pipelines as a fundamental accelerator of data-driven strategies as well as the importance of data orchestration to accelerate analytics and artificial intelligence. As I explained in the recent Data Observability Buyers Guide, data observability software is also a critical aspect of data-driven decision-making. Data...

Read More

Topics: Analytics, data operations, Analytics and Data, AI and Machine Learning


Oracle held an industry analyst summit recently where the focus was on artificial intelligence (AI) and embedded AI. At the event, Oracle demonstrated progress in adding useful AI-enabled capabilities to its business applications, especially in finance and accounting, supply chain, HR and revenue management. To put this into context, across the software industry, AI is already at work in many...

Read More

Topics: Office of Finance, Analytics, Business Planning, ERP and Continuous Accounting, AI and Machine Learning, Order-to-Cash


The artificial intelligence (AI) market is exploding with activity, which is part of the reason we recently announced that we have dedicated an entire practice at Ventana Research to the topic. Large language models (LLMs) and generative AI (GenAI) have taken the AI world by storm. In fact, we assert that through 2026, one-half of all AI investments will be based on generative rather than...

Read More

Topics: AI, natural language processing, Analytics and Data, AI and Machine Learning


I recently wrote about the development, testing and deployment of data pipelines as a fundamental accelerator of data-driven strategies. As I explained in the 2023 Data Orchestration Buyers Guide, today’s analytics environments require agile data pipelines that can traverse multiple data-processing locations and evolve with business needs.

Read More

Topics: Analytics, data operations, Analytics and Data, AI and Machine Learning


I wrote recently about the role that data intelligence has in enabling enterprises to facilitate data democratization and the delivery of data as a product. Data intelligence provides a holistic view of how, when, and why data is produced and consumed across an enterprise, and by whom. This information can be used by data teams toensure business users and data analysts are provided with self...

Read More

Topics: Analytics, Data Ops, data operations, Analytics and Data, AI and Machine Learning


The development, testing and deployment of data pipelines is a fundamental accelerator of data-driven strategies, enabling enterprises to extract data from the operational applications and data platforms designed to run the business and load, integrate and transform it into the analytic data platforms and tools used to analyze the business. As I explained in our recent Data Pipelines Buyers Guide...

Read More

Topics: Analytics, data operations, Analytics and Data, AI and Machine Learning


As enterprises seek to increase data-driven decision-making, many are investing in strategic data democratization initiatives to provide business users and data analysts with self-service access to data across the enterprise. Such access has long been a goal of many enterprises, but few have achieved it. Only 15% of participants in Ventana Research’s Analytics and Data Benchmark Research say...

Read More

Topics: Analytics, data operations, Analytics and Data, AI and Machine Learning


In the technology industry, 2023 will be remembered as the year of generative artificial intelligence. Yes, the world was made aware of GenAI when ChatGPT was publicly launched in November of 2022, but few knew the impact it would have at that point in time. Since then, GenAI has taken the world by storm, with vendors applying the technology to make it easier to ask questions about data, write...

Read More

Topics: Artificial intelligence, Analytics and Data, AI and Machine Learning


Artificial intelligence seems poised to change everything, although naturally a great deal of attention tends to be paid to the cool things it makes possible. AI can also make the humdrum less tedious and even transform the dullest of back-office operations into something more meaningful. For example, AI can take accounts receivable automation to the next level. 

Read More

Topics: Office of Finance, AI, AI and Machine Learning, Order-to-Cash


Interest in artificial intelligence (AI) is exploding driven in large part by the widespread interest in generative AI. ISG’s AI Buyer Behavior Survey reported that more than 6 in 10 participants have at least one AI application in production. However, despite the ease with which individuals can use AI as a result of natural language processing, creating and managing AI models is still a...

Read More

Topics: Data Science, AI, Analytics and Data, AI and Machine Learning


Cloud computing has had an enormous impact on the analytics and data industry in recent decades, with the on-demand provisioning of computational resources providing new opportunities for enterprises to lower costs and increase efficiency. Two-thirds of participants in Ventana Research’s Data Lakes Dynamic Insightsresearch are using a cloud-based environment as the primary data platform for...

Read More

Topics: Analytics, AI, Analytics and Data, AI and Machine Learning


I have previously written about the impact of intelligent operational applications on the requirements for data platforms. Intelligent applications are used to run the business but also deliver personalization, recommendations and other features generated by machine learning and artificial intelligence. As such, they require a combination of operational and analytic processing functionality. The...

Read More

Topics: Analytics, Artificial intelligence, Analytics and Data, AI and Machine Learning


We live in an era of uncertainty, not unpredictability. Managing in uncertain times is always difficult, but tools are available to improve the odds for success by making it easier and faster to plan for contingencies and scenarios. Software makes it possible to manage ahead of any future event, connecting the tactical trees to the strategic forest. The purpose of planning is not just to create a...

Read More

Topics: Office of Finance, Continuous Planning, Data Management, Business Planning, data operations, AI and Machine Learning


Unstructured data has been a significant factor in data lakes and analytics for some time. Twelve years ago, nearly a third of enterprises were working with large amounts of unstructured data. As I’ve pointed out previously, unstructured data is really a misnomer. The data is structured; it's just not structured into rows and columns that fit neatly into a relational table like much of the other...

Read More

Topics: Artificial intelligence, Computer Vision, Analytics and Data, AI and Machine Learning


In recent years, many enterprises have migrated data platform workloads from on-premises infrastructure to cloud environments, attracted by the promised benefits of greater agility and lower costs. The scale of cloud data platform adoption is illustrated by Ventana Research’s Data Lakes Dynamic Insights research: For two-thirds (66%) of participants, the primary data platform used for analytics...

Read More

Topics: business intelligence, Cloud Computing, data operations, robotic automation, analytic data platforms, Analytics and Data, AI and Machine Learning


Imagine a world where artificial intelligence (AI) seamlessly integrates into every facet of your business, only to subtly distort your data and skew your insights. This is the emerging challenge of AI hallucinations, a phenomenon where AI models perceive patterns or objects that do not exist or are beyond human detection.

Read More

Topics: Digital Technology, AI and Machine Learning


Discussion about potential deployment locations for analytics and data workloads is often based on the assumption that, for enterprise workloads, there is a binary choice between on-premises data centers and public cloud. However, the low-latency performance or sovereignty characteristics of a significant and growing proportion of workloads make them better suited to data and analytics processing...

Read More

Topics: Cloud Computing, Internet of Things, Data, Digital Technology, analytic data platforms, Analytics and Data, AI and Machine Learning


The phrase ‘big data’ may have largely gone out of fashion, but the concept of storing and processing all relevant data continues to be important for enterprises seeking to be more data-driven. Doing so requires analytic data platforms capable of storing and processing data in multiple formats and data models. This will be an important focus for the forthcoming Data Platforms Buyer’s Guide 2024. 

Read More

Topics: Analytics, Business Intelligence, Data Management, Data, Digital Technology, data operations, Analytics and Data, AI and Machine Learning


Ensuring digital effectiveness requires insights into how enterprises can provide the best outcomes through people, processes and technologies. Armed with those insights, business and technology investments can effectively innovate and streamline organizational processes.

Read More

Topics: Digital Technology, robotic automation, AI and Machine Learning


Posts by Topic

see all

Posts by Month

see all