Analyst Perspectives

I have previously written about the impact of intelligent operational applications on the requirements for data platforms. Intelligent applications are used to run the business but also deliver personalization, recommendations and other features generated by machine learning and artificial intelligence. As such, they require a combination of operational and analytic processing functionality. The emergence of these intelligent applications does not eradicate the need for separate analysis of...

Read More

Topics: Analytics, Artificial intelligence, Analytics and Data, AI and Machine Learning

We live in an era of uncertainty, not unpredictability. Managing in uncertain times is always difficult, but tools are available to improve the odds for success by making it easier and faster to plan for contingencies and scenarios. Software makes it possible to manage ahead of any future event, connecting the tactical trees to the strategic forest. The purpose of planning is not just to create a plan: Enterprises spend time thinking ahead because it enables leadership teams, executives and...

Read More

Topics: Office of Finance, Continuous Planning, Data Management, Business Planning, data operations, AI and Machine Learning

Unstructured data has been a significant factor in data lakes and analytics for some time. Twelve years ago, nearly a third of enterprises were working with large amounts of unstructured data. As I’ve pointed out previously, unstructured data is really a misnomer. The data is structured; it's just not structured into rows and columns that fit neatly into a relational table like much of the other information enterprises process. Consequently, it requires different skills, different technology...

Read More

Topics: Artificial intelligence, Analytics and Data, AI and Machine Learning

In recent years, many enterprises have migrated data platform workloads from on-premises infrastructure to cloud environments, attracted by the promised benefits of greater agility and lower costs. The scale of cloud data platform adoption is illustrated by Ventana Research’s Data Lakes Dynamic Insights research: For two-thirds (66%) of participants, the primary data platform used for analytics is cloud based. As the quantity and importance of the data platform workloads deployed in the cloud...

Read More

Topics: business intelligence, Cloud Computing, data operations, robotic automation, analytic data platforms, Analytics and Data, AI and Machine Learning

Imagine a world where artificial intelligence (AI) seamlessly integrates into every facet of your business, only to subtly distort your data and skew your insights. This is the emerging challenge of AI hallucinations, a phenomenon where AI models perceive patterns or objects that do not exist or are beyond human detection.

Read More

Topics: Digital Technology, AI and Machine Learning

Discussion about potential deployment locations for analytics and data workloads is often based on the assumption that, for enterprise workloads, there is a binary choice between on-premises data centers and public cloud. However, the low-latency performance or sovereignty characteristics of a significant and growing proportion of workloads make them better suited to data and analytics processing where data is generated rather than a centralized on-premises or public cloud environment. ...

Read More

Topics: Cloud Computing, Internet of Things, Data, Digital Technology, analytic data platforms, Analytics and Data, AI and Machine Learning

The phrase ‘big data’ may have largely gone out of fashion, but the concept of storing and processing all relevant data continues to be important for enterprises seeking to be more data-driven. Doing so requires analytic data platforms capable of storing and processing data in multiple formats and data models. This will be an important focus for the forthcoming Data Platforms Buyer’s Guide 2024. 

Read More

Topics: Analytics, Business Intelligence, Data Management, Data, Digital Technology, data operations, Analytics and Data, AI and Machine Learning

Ensuring digital effectiveness requires insights into how enterprises can provide the best outcomes through people, processes and technologies. Armed with those insights, business and technology investments can effectively innovate and streamline organizational processes.

Read More

Topics: Digital Technology, robotic automation, AI and Machine Learning

I recently discussed how fashion has a surprisingly significant role to play in the data market as various architectural approaches to data storage and processing take turns enjoying a phase in the limelight. Pendulum swing is a theory of fashion that describes the periodic movement of trends between two extremes, such as short and long hemlines or skinny and baggy/flared trousers. Pendulum swing theory is similarly a factor in data technology trends, with an example being the oscillation...

Read More

Topics: Analytics, Cloud Computing, Data Management, Data, Digital Technology, data operations, Analytics and Data, AI and Machine Learning

I recently articulated some of the reasons why IT teams can fail to deliver on the business requirements for data and analytics projects. This is an age-old and multifaceted problem that is not easily solved. Organizations have a role to play in alleviating the issue by ensuring that their business processes and project planning support a collaborative approach in which business and IT professionals work together. Data and analytics product vendors can also help by delivering products that are...

Read More

Topics: Cloud Computing, Data Governance, Data Management, Data, Digital Technology, Analytics and Data, AI and Machine Learning
JOIN OUR COMMUNITY

Our Analyst Perspective Policy

  • Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business, industry and technology vendor trends. Each Analyst Perspective presents the view of the analyst who is an established subject matter expert on new developments, business and technology trends, findings from our research, or best practice insights.

    Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@ventanaresearch.com

View Policy

Subscribe to Email Updates

Want more customized control? Fill out your community profile

Posts by Month

see all

Posts by Topic

see all


Analyst Perspectives Archive

See All

Close menu