Ventana Research uses the term “data pantry” to describe a method of data storage (and the technology and process blueprint for its construction) created for a specific set of users and use cases in business-focused software. It’s a pantry because all the data one needs is readily available and easily accessible, with labels that are immediately recognized and understood by the users of the application. In tech speak, this means the semantic layer is optimized for the intended audience. It is...
Read More
Topics:
Continuous Planning,
Business Intelligence,
Data Management,
Business Planning,
Data,
Financial Performance Management,
Enterprise Resource Planning,
continuous supply chain,
data operations,
digital finance,
profitability management,
Analytics & Data,
Streaming Data & Events,
AI and Machine Learning
In previous perspectives in this series, I’ve discussed some of the realities of cloud computing including costs, hybrid and multi-cloud configurations and business continuity. This perspective examines the realities of security and regulatory concerns associated with cloud computing. These issues are often cited by our research participants as reasons they are not embracing the cloud. To be fair, the majority of our research participants are embracing the cloud. However, among those that have...
Read More
Topics:
Analytics,
Business Intelligence,
Cloud Computing,
Data Governance,
Digital Technology,
Analytics & Data,
Governance & Risk,
AI and Machine Learning
Recently, I suggested you need to “mind the gap” between data and analytics. This perspective addresses another gap — the gap in skills between business intelligence (BI) and artificial intelligence/machine learning (AI/ML).
Read More
Topics:
Analytics,
Business Intelligence,
Digital Technology,
Analytics & Data,
AI and Machine Learning
Almost all organizations are investing in data science, or planning to, as they seek to encourage experimentation and exploration to identify new business challenges and opportunities as part of the drive toward creating a more data-driven culture. My colleague, David Menninger, has written about how organizations using artificial intelligence and machine learning (AI/ML) report gaining competitive advantage, improving customer experiences, responding faster to opportunities and threats, and...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
Analytics & Data,
Analytic Data Platforms,
AI and Machine Learning
If you’ve ever been to London, you are probably familiar with the announcements on the London Underground to “mind the gap” between the trains and the platform. I suggest we also need to mind the gap between data and analytics. These worlds are often disconnected in organizations and, as a result, it limits their effectiveness and agility.
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Data Governance,
Data Management,
data operations,
Analytics & Data
I have written a few times in recent months about vendors offering functionality that addresses data orchestration. This is a concept that has been growing in popularity in the past five years amid the rise of Data Operations (DataOps), which describes more agile approaches to data integration and data management. In a nutshell, data orchestration is the process of combining data from multiple operational data sources and preparing and transforming it for analysis. To those unfamiliar with the...
Read More
Topics:
Data Management,
Data,
data operations,
Analytics & Data,
AI and Machine Learning
Ventana Research’s Data Lakes Dynamics Insights research illustrates that while data lakes are fulfilling their promise of enabling organizations to economically store and process large volumes of raw data, data lake environments continue to evolve. Data lakes were initially based primarily on Apache Hadoop deployed on-premises but are now increasingly based on cloud object storage. Adopters are also shifting from data lakes based on homegrown scripts and code to open standards and open...
Read More
Topics:
Business Intelligence,
Data Governance,
Data Management,
Data,
data operations,
Analytics & Data,
Streaming Data & Events,
operational data platforms,
Analytic Data Platforms,
AI and Machine Learning
I have written before about the continued use of specialist operational and analytic data platforms. Most database products can be used for operational or analytic workloads, and the number of use cases for hybrid data processing is growing. However, a general-purpose database is unlikely to meet the most demanding operational or analytic data platform requirements. Factors including performance, reliability, security and scalability necessitate the use of specialist data platforms. I assert...
Read More
Topics:
business intelligence,
Cloud Computing,
Data Management,
Data,
Analytics & Data,
Analytic Data Platforms
I have recently written about the organizational and cultural aspects of being data-driven, and the potential advantages data-driven organizations stand to gain by responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. I have also explained that data-driven processes require more agile, continuous data processing, with an increased focus on extract, load and transform processes — as well as change data capture and automation...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
data operations,
Analytics & Data