Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar Analyst Perspectives BottomBar
  • Available Posts: 0

I previously explained the arguments in favor of adoption of distributed SQL databases, the new generation of operational data platforms designed to combine the benefits of the relational database model and native support for distributed cloud architecture. It is critical for distributed SQL vendors to engage with developers to ensure they are considering the importance of resilience that spans...

Read More

Topics: Cloud Computing, Data, Digital Technology, Analytics and Data


Data fabric has grown in popularity as organizations struggle to manage data spread across multiple data centers, systems and applications. By providing a technology-driven approach to automating data management and governance across distributed environments, data fabric is attractive to organizations seeking to simplify and standardize data management. I assert that by 2025, more than 6 in 10...

Read More

Topics: Cloud Computing, Data Management, Data, Digital Technology, data operations, analytic data platforms, Analytics and Data


The data and analytics sector rightly places great importance on data quality: Almost two-thirds (64%) of participants in Ventana Research’s Analytics and Data Benchmark Research cite reviewing data for quality and consistency issues as the most time-consuming task in analyzing data. Data and analytics vendors would not recommend that customers use tools known to have data quality problems. It is...

Read More

Topics: Analytics, Data Governance, Data Management, Data, Digital Technology, natural language processing, Analytics and Data, AI and Machine Learning


Master data management may not attract the same level of excitement as fashionable topics such as DataOps or Data Platforms, but it remains one of the most significant aspects of an organization’s strategic approach to data management. Having trust in data is critical to the ability of an organization to make data-driven business decisions. Along with data quality, MDM enables organizations to...

Read More

Topics: Data Governance, Data Management, Data, data operations


The data platforms market has traditionally been divided between products specifically designed to support operational or analytic workloads, with other market segments having emerged in recent years for data platforms targeted specifically at data science and machine learning (ML), as well as real-time analytics. More recently, we have seen vendor strategies evolving to provide a more...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, analytic data platforms, Analytics and Data, AI and Machine Learning


The recent publication of our Value Index research highlights the impact of intelligent applications on the operational data platforms sector. While we continue to believe that, for most use cases, there is a clear, functional requirement for either analytic or operational data platforms, recent growth in the development of intelligent applications infused with the results of analytic processes,...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, analytic data platforms, Analytics and Data


As engagement with customers, suppliers and partners is increasingly conducted through digital channels, ensuring that infrastructure and applications are performing as expected is not just important but mission critical. My colleague, David Menninger, recently explained the increasing importance of observability to enable organizations to ensure that their systems and applications are operating...

Read More

Topics: Data Management, Data, Digital Technology, Analytics and Data


I have written recently about the increasing importance of managing data in motion and at rest as the use of streaming data by enterprise organizations becomes more mainstream. While batch-based processing of application data has been a core component of enterprise IT architecture for decades, streaming data and event processing have often been niche disciplines typically reserved for...

Read More

Topics: Data, Streaming Data Events


To execute more data-driven business strategies, organizations need linked and comprehensive data that is available in real time. By consistently managing data across siloed systems and ensuring that data definitions are agreed and current, organizations can overcome the challenges presented by data being distributed across an increasingly disparate range of applications and data-processing...

Read More

Topics: Data Management, Data, data operations


Data Operations (DataOps) has been part of the lexicon of the data market for almost a decade, with the term used to describe products, practices and processes designed to support agile and continuous delivery of data analytics. DataOps takes inspiration from DevOps, which describes a set of tools, practices and philosophy used to support the continuous delivery of software applications in the...

Read More

Topics: Data Governance, Data Management, Data, data operations


As data continues to grow and evolve, organizations seek better tools and technologies to employ data faster and more efficiently. Finding and managing data remains a perennial challenge for most organizations, and is exacerbated by increasing volumes of data and an expanding array of data formats. At the same time, organizations must comply with a growing list of national and regional rules and...

Read More

Topics: Data Governance, Data Management, Data, data operations


Success with streaming data and events requires a more holistic approach to managing and governing data in motion and data at rest. The use of streaming data and event processing has been part of the data landscape for many decades. For much of that time, data streaming was a niche activity, however, with standalone data streaming and event-processing projects run in parallel with existing...

Read More

Topics: Analytics, Data, Digital Technology, Streaming Analytics, Streaming Data Events, analytic data platforms, Analytics and Data


I have previously written about the importance of data democratization as a key element of a data-driven agenda. Removing barriers that prevent or delay users from gaining access to data enables it to be treated as a product that is generated and consumed, either internally by employees or externally by partners and customers. This is particularly important for organizations adopting the data mesh

Read More

Topics: Cloud Computing, Data Governance, Data Management, Data, Digital Technology, data operations, Analytics and Data


I recently wrote about the potential use cases for distributed SQL databases as well as techniques being employed by vendors to accelerate adoption. Distributed SQL is a term that is used by several vendors to describe operational data platform products that combine the benefits of the relational database model and native support for distributed cloud architecture, including resilience that spans...

Read More

Topics: Cloud Computing, Data, Digital Technology, Analytics and Data


Organizations require faster analytics to continuously improve business operations and stay competitive in today’s market. However, many struggle with slow analytics due to a variety of factors such as slow databases, insufficient data storage capacity, poor data quality, lack of proper data cleansing and inadequate IT infrastructure. Challenges such as data silos can also decrease operational...

Read More

Topics: Data Management, Data, analytic data platforms


I have previously written about the functional evolution and emerging use cases for NoSQL databases, a category of non-relational databases that first emerged 15 or so years ago and are now well established as potential alternatives to relational databases. NoSQL is a term that is used to describe a variety of databases that fall into four primary functional categories: key-value stores, wide...

Read More

Topics: Data


The market for data and analytics products is constantly evolving, with the emergence of new approaches to data persistence, data processing and analytics. This enables organizations to constantly adapt data analytics architecture in response to emerging functional capabilities and business requirements. It can, however, also be a challenge. Investments in data platforms cannot be constantly...

Read More

Topics: Data Governance, Data Management, Data, data operations


Data observability was a hot topic in 2022 and looks likely to be a continued area of focus for innovation in 2023 and beyond. As I have previously described, data observability software is designed to automate the monitoring of data platforms and data pipelines, as well as the detection and remediation of data quality and data reliability issues. There has been a Cambrian explosion of data...

Read More

Topics: Cloud Computing, Data Management, Data, Digital Technology, data operations, Analytics and Data


I have written about the increased demand for data-intensive operational applications infused with the results of analytic processes, such as personalization and artificial intelligence-driven recommendations. I previously described the use of hybrid data processing to enable analytics on application data within operational data platforms. As is often the case in the data platforms sector,...

Read More

Topics: Cloud Computing, Data, Digital Technology, analytic data platforms, Analytics and Data


Organizations across various industries collect multiple types of data from disparate systems to answer key business questions and deliver personalized experiences for customers. The expanding volume of data increases complexity, and data management becomes a challenge if the process is manual and rules-based. There can be numerous siloed, incomplete and outdated data sources that result in...

Read More

Topics: Data Governance, Data Management, Data, data operations, analytic data platforms


Posts by Topic

see all

Posts by Month

see all