Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar Analyst Perspectives BottomBar
  • Available Posts: 0

As I recently pointed out, process mining has emerged as a pivotal technology for data-driven organizations to discover, monitor and improve processes through use of real-time event data, transactional data and log files. With recent advancements, process mining has become more efficient at discovering insights in complex processes using algorithms and visualizations. Organizations use it to...

Read More

Topics: Analytics, Business Intelligence, Process Mining, Streaming Analytics, AI and Machine Learning


Earlier this year I described the growing use-cases for hybrid data processing. Although it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads respectively, there is increased demand for intelligent operational applications infused with the results of analytic processes, such as...

Read More

Topics: Business Intelligence, Cloud Computing, Data, Streaming Data Events, analytic data platforms, AI and Machine Learning


A predictive finance department is one that can command technology to be more forward-looking and action-oriented while still fulfilling its core role of handling the financial elements of its organization including accounting, treasury and corporate finance. Beyond just automating rote tasks, technology also facilitates a shift toward becoming a predictive finance organization. Greater amounts...

Read More

Topics: Office of Finance, Business Intelligence, Data Management, Business Planning, Financial Performance Management, ERP and Continuous Accounting, AI and Machine Learning


Process mining is defined as the analysis of application telemetry including log files, transaction data and other instrumentation to understand and improve operational processes. Log data provides an abundance of information about what operations are occurring, the sequences involved in the processes, how long the processes are taking and whether or not the processes are completed successfully....

Read More

Topics: Analytics, Business Intelligence, Process Mining, AI and Machine Learning


Organizations are collecting data from multiple data sources and a variety of systems to enrich their analytics and business intelligence (BI). But collecting data is only half of the equation. As the data grows, it becomes challenging to find the right data at the right time. Many organizations can’t take full advantage of their data lakes because they don’t know what data actually exists. Also,...

Read More

Topics: Business Intelligence, Data Governance, Data Management, data operations, AI and Machine Learning


Kinaxis recently announced it has acquired a Netherlands-based company, MPO, a cloud-based software offering that orchestrates multiparty supply chain execution. The combination is designed to enable Kinaxis to extend its concurrent planning platform to handle core elements of supply chain execution. Kinaxis acquired all the shares of MPO for approximately US$45 million, with some of the final...

Read More

Topics: Business Intelligence, Business Planning, Operations & Supply Chain, Enterprise Resource Planning, continuous supply chain, AI and Machine Learning


Business intelligence has evolved. It now includes a spectrum of analytics, one of the most promising of which has been described as augmented intelligence. Some organizations have used the term to describe the practical reality that artificial intelligence with machine learning is not replacing human intelligence, but augmenting it. The term also represents the application of AI/ML to make...

Read More

Topics: Analytics, Business Intelligence, natural language processing, Collaborative & Conversational Computing, Analytics and Data, AI and Machine Learning


Organizations are managing and analyzing large datasets every day, identifying patterns and generating insights to inform decisions. This can provide numerous benefits for an organization, such as improved operational efficiency, cost optimization, fraud detection, competitive advantage and enhanced business processes. By bringing the right, actionable data to the right user, organizations can...

Read More

Topics: embedded analytics, Business Intelligence, Internet of Things, Streaming Analytics, AI and Machine Learning


The analytics and business intelligence market landscape continues to grow as more organizations seek robust tools and capabilities to visualize and better understand data. BI systems are used to perform data analysis, identify market trends and opportunities and streamline business processes. They can collect and combine data from internal and external systems to present a holistic view.

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Management, Analytics and Data, AI and Machine Learning


Anaplan offers a cloud-based business planning platform that incorporates a modeling and calculation engine. The tool makes it relatively easy to add or expand the scope of plans that can be connected and monitored on a single platform. This Integrated Business Planning (IBP) approach enables organizations to use the software for financial planning or budgeting, sales, supply chain, workforce,...

Read More

Topics: Office of Finance, Continuous Planning, Business Intelligence, Business Planning, Financial Performance Management, continuous supply chain, AI and Machine Learning


I recently explained how emerging application requirements were expanding the range of use cases for NoSQL databases, increasing adoption based on the availability of enhanced functionality. These intelligent applications require a close relationship between operational data platforms and the output of data science and machine learning projects. This ensures that machine learning and predictive...

Read More

Topics: Business Intelligence, Data, analytic data platforms, AI and Machine Learning


I often use the term “analytics” to refer to a broad set of capabilities, deliberately broader than business intelligence. In this Perspective, I’d like to share what decision-makers should consider as they evaluate the range of analytics requirements for their organization.

Read More

Topics: Business Intelligence, natural language processing, Streaming Analytics, Analytics and Data, AI and Machine Learning


Organizations are collecting vast amounts of data every day, utilizing business intelligence software and data visualization to gain insights and identify patterns and errors in the data. Making sense of these patterns can enable an organization to gain an edge in the marketplace and plan more strategically.

Read More

Topics: embedded analytics, Analytics, Business Intelligence, AI and Machine Learning


When joining Ventana Research, I noted that the need to be more data-driven has become a mantra among large and small organizations alike. Data-driven organizations stand to gain competitive advantage, responding faster to worker and customer demands for more innovative, data-rich applications and personalized experiences. Being data-driven is clearly something to aspire to. However, it is also a...

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, natural language processing, data lakes, data operations, Streaming Analytics, Streaming Data Events, Analytics and Data, AI and Machine Learning


I previously described the concept of hydroanalytic data platforms, which combine the structured data processing and analytics acceleration capabilities associated with data warehousing with the low-cost and multi-structured data storage advantages of the data lake. One of the key enablers of this approach is interactive SQL query engine functionality, which facilitates the use of existing...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, data lakes, data operations, Analytics and Data, AI and Machine Learning


I’ve never been a fan of talking about semantic models because most of the workforce probably doesn’t understand what they are, or doesn’t recognize them by name. But the findings in our recent Analytics and Data Benchmark Research have changed my mind. The research shows how important a semantic model can be to the success of data and analytics processes. Organizations that have successfully...

Read More

Topics: Business Intelligence, Data Management, data operations, Analytics and Data, AI and Machine Learning


As I recently described, it is anticipated that the majority of database workloads will continue to be served by specialist data platforms targeting operational and analytic workloads, albeit with growing demand for hybrid data processing use-cases and functionality. Specialist operational and analytic data platforms have historically been the since preferred option, but there have always been...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, Analytics and Data


Organizations are scaling business intelligence initiatives to gain a competitive advantage and increase revenue as more data is created. Lack of expertise, data governance and slow performance can impact these efforts. Our Analytics and Data Benchmark Research finds some of the most pressing complaints about analytics and BI include difficulty integrating with other business processes and...

Read More

Topics: Business Intelligence, Data Governance


I recently wrote about the potential benefits of data mesh. As I noted, data mesh is not a product that can be acquired, or even a technical architecture that can be built. It’s an organizational and cultural approach to data ownership, access and governance. While the concept of data mesh is agnostic to the technology used to implement it, technology is clearly an enabler for data mesh. For many...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, data operations, Streaming Data Events, AI and Machine Learning


I recently described the use cases driving interest in hybrid data processing capabilities that enable analysis of data in an operational data platform without impacting operational application performance or requiring data to be extracted to an external analytic data platform. Hybrid data processing functionality is becoming increasingly attractive to aid the development of intelligent...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, Analytics and Data, AI and Machine Learning


Posts by Topic

see all

Posts by Month

see all