Analyst Perspectives


Search within Analyst Perspectives blog:

TopBar Analyst Perspectives BottomBar
  • Available Posts: 0

I recently wrote about the potential benefits of data mesh. As I noted, data mesh is not a product that can be acquired, or even a technical architecture that can be built. It’s an organizational and cultural approach to data ownership, access and governance. While the concept of data mesh is agnostic to the technology used to implement it, technology is clearly an enabler for data mesh. For many...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, data operations, Streaming Data Events, AI and Machine Learning


I recently described the use cases driving interest in hybrid data processing capabilities that enable analysis of data in an operational data platform without impacting operational application performance or requiring data to be extracted to an external analytic data platform. Hybrid data processing functionality is becoming increasingly attractive to aid the development of intelligent...

Read More

Topics: Analytics, Business Intelligence, Cloud Computing, Data, Digital Technology, Analytics and Data, AI and Machine Learning


The server is a key component of enterprise computing, providing the functional compute resources required to support software applications. Historically, the server was so fundamentally important that it – along with the processor, or processor core – was also a definitional unit by which software was measured, priced and sold. That changed with the advent of cloud-based service delivery and...

Read More

Topics: Business Continuity, Cloud Computing, Data, Digital Technology, Analytics and Data


Over a decade ago, I coined the term NewSQL to describe the new breed of horizontally scalable, relational database products. The term was adopted by a variety of vendors that sought to combine the transactional consistency of the relational database model with elastic, cloud-native scalability. Many of the early NewSQL vendors struggled to gain traction, however, and were either acquired or...

Read More

Topics: Business Continuity, Cloud Computing, Data, Digital Technology, Analytics and Data


I recently described how the operational data platforms sector is in a state of flux. There are multiple trends at play, including the increasing need for hybrid and multicloud data platforms, the evolution of NoSQL database functionality and applicable use-cases, and the drivers for hybrid data processing. The past decade has seen significant change in the emergence of new vendors, data models...

Read More

Topics: business intelligence, Analytics, Data Integration, Data, AI and Machine Learning


I recently wrote about the importance of data pipelines and the role they play in transporting data between the stages of data processing and analytics. Healthy data pipelines are necessary to ensure data is integrated and processed in the sequence required to generate business intelligence. The concept of the data pipeline is nothing new of course, but it is becoming increasingly important as...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, Digital transformation, data lakes, data operations, Streaming Data Events, Analytics and Data, AI and Machine Learning


Data governance is an issue that impacts all organizations large and small, new and old, in every industry, and every region of the world. Data governance ensures that an organization’s data can be cataloged, trusted and protected, improving business processes to accelerate analytics initiatives and support compliance with regulatory requirements. Not all data governance initiatives will be...

Read More

Topics: Analytics, Data Governance, Data


I recently described the growing level of interest in data mesh which provides an organizational and cultural approach to data ownership, access and governance that facilitates distributed data processing. As I stated in my Analyst Perspective, data mesh is not a product that can be acquired or even a technical architecture that can be built. Adopting the data mesh approach is dependent on people...

Read More

Topics: Business Continuity, Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, data lakes, Analytics and Data


I have written previously that the world of data and analytics will become more and more centered around real-time, streaming data. Data is created constantly and increasingly is being collected simultaneously. Technology advances now enable organizations to process and analyze information as it is being collected to respond in real time to opportunities and threats. Not all use cases require...

Read More

Topics: business intelligence, Analytics, Internet of Things, Data, Digital Technology, Streaming Analytics, Streaming Data Events, Analytics and Data, AI and Machine Learning


Data mesh is the latest trend to grip the data and analytics sector. The term has been rapidly adopted by numerous vendors — as well as a growing number of organizations —as a means of embracing distributed data processing. Understanding and adopting data mesh remains a challenge, however. Data mesh is not a product that can be acquired, or even a technical architecture that can be built. It is...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data Integration, Data, Digital Technology, Digital transformation, data lakes, data operations, Streaming Data Events, Analytics and Data


For years, maybe decades, we have heard about the struggles between IT and line-of-business functions. In this perspective, we will look at some of the data from our Analytics and Data Benchmark Research about the roles of IT and line-of-business teams in analytics and data processes. We will also look at some of the disconnects between these two groups. And, by looking at how organizations are...

Read More

Topics: Analytics, Business Intelligence, Data, Digital Technology, Analytics and Data, AI and Machine Learning


Despite widespread and increasing use of the cloud for data and analytics workloads, it has become clear in recent years that, for most organizations, a proportion of data-processing workloads will remain on-premises in centralized data centers or distributed-edge processing infrastructure. As we recently noted, as compute and storage are distributed across a hybrid and multi-cloud architecture,...

Read More

Topics: Analytics, Business Intelligence, Data Governance, Data, data operations, AI and Machine Learning


I recently examined how evolving functionality had fueled the adoption of NoSQL databases, recommending that organizations evaluate NoSQL databases when assessing options for data transformation and modernization efforts. This recommendation was based on the breadth and depth of functionality offered by NoSQL database providers today, which has expanded the range of use cases for which NoSQL...

Read More

Topics: NoSQL, Data


The various NoSQL databases have become a staple of the data platforms landscape since the term entered the IT industry lexicon in 2009 to describe a new generation of non-relational databases. While NoSQL began as a ragtag collection of loosely affiliated, open-source database projects, several commercial NoSQL database providers are now established as credible alternatives to the various...

Read More

Topics: Analytics, Data, AI and Machine Learning


As businesses become more data-driven, they are increasingly dependent on the quality of their data and the reliability of their data pipelines. Making decisions based on data does not guarantee success, especially if the business cannot ensure that the data is accurate and trustworthy. While there is potential value in capturing all data — good or bad — making decisions based on low-quality data...

Read More

Topics: Data Governance, Data Integration, Data, Digital Technology, data lakes, data operations, Analytics and Data


Despite all the advances organizations have made with respect to analytics, our most recent research shows the majority of the workforce in the majority of organizations are not using analytics and business intelligence (BI). Less than one-quarter (23%) report that one-half or more of their workforce is using analytics and BI. This is a problem. It means organizations are not enabling their...

Read More

Topics: Sales, business intelligence, embedded analytics, Analytics, Data, Sales Performance Management, Digital Technology, Digital Commerce, natural language processing, Subscription Management, partner management, Collaborative & Conversational Computing


I recently described the emergence of hydroanalytic data platforms, outlining how the processes involved in generating energy from a lake or reservoir were analogous to those required to generate intelligence from a data lake. I explained how structured data processing and analytics acceleration capabilities are the equivalent of turbines, generators and transformers in a hydroelectric power...

Read More

Topics: Analytics, Data Governance, Data, Digital Technology, data lakes, data operations, Streaming Data Events, AI and Machine Learning


Many organizations invest in data governance out of concern over misuse of data or potential data breaches. These are important considerations and valid aspects of data governance programs. However, good data governance also has positive impacts on organizations. For example, I have previously written about the valuable connection between the use of data catalogs and satisfaction with an...

Read More

Topics: embedded analytics, Analytics, Data Governance, Data, Digital Technology


As I stated when joining Ventana Research, the socioeconomic impacts of the pandemic and its aftereffects have highlighted more than ever the differences between organizations that can turn data into insights and are agile enough to act upon it and those that are incapable of seeing or responding to the need for change. Data-driven organizations stand to gain competitive advantage, responding...

Read More

Topics: Analytics, Business Intelligence, Data Integration, Data, data lakes, data operations, Streaming Data Events, AI and Machine Learning


I recently described how the data platforms landscape will remain divided between analytic and operational workloads for the foreseeable future. Analytic data platforms are designed to store, manage, process and analyze data, enabling organizations to maximize data to operate with greater efficiency, while operational data platforms are designed to store, manage and process data to support...

Read More

Topics: embedded analytics, Analytics, Business Intelligence, Data, Digital Technology, Streaming Data Events, Analytics and Data, AI and Machine Learning


Posts by Topic

see all

Posts by Month

see all